Computing real inflection points of cubic algebraic curves
نویسندگان
چکیده
Shape modeling using planar cubic algebraic curves calls for computing the real inflection points of these curves since inflection points represents important shape feature. A real inflection point is also required for transforming projectively a planar cubic algebraic curve to the normal form, in order to facilitate further analysis of the curve. However, the naive method for computing the inflection points of a planar cubic algebraic curve f = 0 by directly intersecting f = 0 and its Hessian curve H(f )= 0 requires solving a degree nine univariate polynomial equation, and thus is relatively inefficient. In this paper we present an algorithm for computing the real inflection points of a real planar cubic algebraic curve. The algorithm follows Hilbert’s solution for computing the inflection points of a cubic algebraic curve in the complex projective plane. Hilbert’s solution is based on invariant theory and requires solving only a quartic polynomial equation and several cubic polynomial equations. Through a detailed study with emphasis on the distinction between real and imaginary inflection points, we adapt Hilbert’s solution to efficiently compute only the real inflection points of a cubic algebraic curve f = 0, without exhaustive but unnecessary search and root testing. To compute the real inflection points of f = 0, only two cubic polynomial equations need to be solved in our algorithm and it is unnecessary to solve numerically the quartic equation prescribed in Hilbert’s solution. In addition, the invariants of f = 0 are used to analyze the singularity of a singular curve, since the number of the real inflection points of f = 0 depends on its singularity type. 2003 Published by Elsevier Science B.V.
منابع مشابه
Inflection Points on Real Plane Curves Having Many Pseudo-Lines
A pseudo-line of a real plane curve C is a global real branch of C(R) that is not homologically trivial in P(R). A geometrically integral real plane curve C of degree d has at most d− 2 pseudo-lines, provided that C is not a real projective line. Let C be a real plane curve of degree d having exactly d − 2 pseudo-lines. Suppose that the genus of the normalization of C is equal to d− 2. We show ...
متن کاملStar points on smooth hypersurfaces
— A point P on a smooth hypersurface X of degree d in PN is called a star point if and only if the intersection of X with the embedded tangent space TP (X) is a cone with vertex P . This notion is a generalization of total inflection points on plane curves and Eckardt points on smooth cubic surfaces in P3. We generalize results on the configuration space of total inflection points on plane curv...
متن کاملCubic parametric curves of given tangent and curvature
We propose a constructive solution to the problem of finding a cubic parametric curve in a plane if the tangent vectors (derivatives with respect to the parameter) and signed curvatures are given at its end-points but the end-points themselves are unknown. We also show how these curves can be applied to construct blending curves subject to curvature, arc length, inflection and area constraints.
متن کاملCharacterization of Planar Cubic Alternative curve
In this paper, we analyze the planar cubic Alternative curve to determine the conditions for convex, loops, cusps and inflection points. Thus cubic curve is represented by linear combination of three control points and basis function that consist of two shape parameters. By using algebraic manipulation, we can determine the constraint of shape parameters and sufficient conditions are derived wh...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer Aided Geometric Design
دوره 20 شماره
صفحات -
تاریخ انتشار 2003